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ABSTRACT. An individual-based model of stream trout 
is analyzed by testing its ability to reproduce patterns of 
population-level behavior observed in real trout: (1) “self-
thinning,” a negative power relation between weight and 
abundance; (2) a “critical period” of density-dependent mor­
tality in young-of-the-year; (3) high and age-specific inter-
annual variability in abundance; (4) density dependence in 
growth; and (5) fewer large trout when pool habitat is elim­
inated. The trout model successfully reproduced these pat-
terns and was useful for evaluating their theoretical basis. 
The model analyses produced new explanations for some field 
observations and indicated that some patterns are less gen­
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eral than field studies indicate. The model did not reproduce 
field-observed patterns of population variability by age class, 
discrepancies potentially explained by site differences, preda­
tion mortality being more stochastic than the model assumes, 
or uncertainty in the field study’s age estimates. 

Introduction. In a recent review of individual-based models 
(IBM’s), Grimm [1999] identified reasons why IBM’s have contributed 
little to ecological research and management. Prominent among these 
reasons are that modelers have not (1) explored IBM results to un­
derstand why they occurred, (2) tested and validated the realism of 
IBM’s, and (3) compared IBM results to conventional ecological the­
ory. Railsback [2001] suggested that evaluating an IBM’s ability to 
reproduce a wide range of observed patterns is a productive way to 
test the model, understand how results emerge from properties of in­
dividuals and evaluate ecological theory using the model. We present 
such a pattern-oriented exploration and validation of an IBM of stream 
trout. We examine population-level simulation results, comparing the 
IBM’s predictions to patterns of trout population dynamics observed 
in natural systems or predicted by ecological theory. 

The model we examine is the cutthroat trout model of Railsback 
and Harvey [2001], which was designed as a research and management 
tool for understanding how stream flow and habitat alterations affect 
trout individuals and population dynamics. In this model, selection 
of habitat is the primary means by which individual trout adapt to 
changing conditions. A previous analysis showed that this model 
can reproduce a wide range of realistic habitat selection behaviors in 
response to changes in habitat and competitive conditions that affect 
growth and mortality (Railsback and Harvey [in press]). However, the 
population dynamics that emerge as individuals respond to habitat 
and each other have not previously been examined for this model. 
Clark and Rose [1997] conducted an extensive population-level analysis 
of a different stream trout model, but did not precede this analysis 
by demonstrating that their model could produce realistic individual 
behaviors. 

This paper addresses three objectives. First is to analyze and un­
derstand the population dynamics produced by the IBM and how 
they emerge from processes acting at the individual level. Second is 
to test the model’s ability to reproduce observed patterns of popula-
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tion response, providing evidence of the model’s validity for predicting 
population-level phenomena. Third is to compare model results to 
population-level patterns that might be expected theoretically. These 
objectives are addressed by (1) establishing a priori patterns of ex­
pected population response that have been observed in natural popula­
tions or derived from theory, (2) simulating the conditions under which 
the expected population response patterns arose, and (3) comparing 
simulated responses to the expected patterns and examining why the 
simulated responses did or did not match the expected patterns. 

2. Methods. 

2.1 Trout IBM. The model we analyze is described in full by 
Railsback and Harvey [2001]; a description of the model except for 
the reproductive cycle is provided by Railsback and Harvey [in press]. 
The model has the following key properties. 

(1) A one-day time step is used, but within a day fish are assumed 
to feed during day and hide at night. 

(2) The external driving variables are stream flow, water temperature 
and food availability. Daily flow and temperature values are input. 
Drifting food items are assumed to occur at a constant concentration 
(grams food per cubic m of water), and stationary food items are 
assumed to be produced at a constant rate per unit of wetted stream 
area. Food production therefore varies with flow but not with season. 

(3) Space is represented as a collection of two-dimensional (vertically 
averaged) cells that are one to several m on each side. Water depth 
and velocity in each cell is a function of stream flow, determined using 
a hydraulic model. 

(4) Trout are not assumed to be territorial but instead compete in 
a size-determined hierarchy for the food available in each cell on each 
day. Competitive interactions are not simulated, but a fish has access 
only to the food not consumed by bigger fish in its cell. 

(5) Growth is modeled as a function of food intake and metabolic 
energy costs, using standard bioenergetics methods. Metabolic costs 
increase with swimming speed. Swimming speed is assumed equal to 
the water velocity in the fish’s cell, except that fish may use velocity 
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shelters to reduce swimming speed while feeding on drift, and swimming 
is zero at night. 

(6) Mortality risks to trout include poor condition (starvation and dis­
ease resulting from low weight), terrestrial predation (which increases 
with trout size and decreases with water depth and velocity), cannibal-
ism (a risk to small juveniles that is lower in shallow water), exhaustion 
due to extreme velocities and the stranding and excess predation risk 
of extremely shallow habitat. 

(7) Every day trout move, if there is any better habitat available 
within an area of “known” habitat. This area increases with trout 
size. Trout select habitat using the “expected reproductive maturity” 
measure (Railsback et al. [1999]), an estimate of expected probability of 
future survival and growth to reproductive size. This approach causes 
fish to select habitat that provides a good tradeoff between mortality 
risks and growth. In general, fish seek habitat that provides minimal 
risks and sufficient growth to avoid starvation and reach reproductive 
size. These assumptions are simple but produce realistic movement at 
a daily time scale (Railsback and Harvey [in press]). 

(8) Redds (nests of trout eggs in the stream gravel) are modeled ex­
plicitly. Redds are vulnerable to scouring at high flows and dewatering 
at low flows. 

(9) There is no emigration or immigration in the model. The effects 
of this assumption on population dynamics have not been examined. 

The model was programmed using the Swarm simulation system 
(Minar et al. [1996]). The software allows users to observe the individ­
ual fish to test and understand simulations, and includes an experiment 
manager that automates the generation and execution of replicate sim­
ulations of multiple scenarios. The software was tested extensively by 
comparing output of its key components to independent implementa­
tions of these components in spreadsheet software, and is fully docu­
mented (EPRI [1999]). 

The modeled site is on Little Jones Creek, about 1000 m above its 
confluence with the Smith River, Del Norte County, in northwestern 
California. Little Jones Creek is a third-order mountain stream of 
moderate gradient. The climate is moderate year-round due to marine 
influence, but flows are highly seasonal because rainfall is rare between 
June and September. Cutthroat trout are the only fish species at the 
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site, and ocean migrations are precluded by a downstream waterfall. 

Habitat input was collected on a 187-m reach of the stream, which 
includes several sequences of riffles and pools created by bedrock and 
large wood. The site is described in more detail by Harvey [1998]. To 
increase the number of fish in our analyses and reduce errors due to the 
lack of emigration and immigration in our model, we doubled the size 
of the modeled area by duplicating the entire 187-m habitat sequence. 

Simulations were conducted using parts or all of a 12-year period 
representing October, 1987 through September, 1999. Daily stream 
flows were estimated from flows measured at a gaging station on the 
Smith River, using a regression relationship developed from approxi­
mately one year of daily flow measurements made at the study site. 
Water temperature at the study site varies little and is almost always 
within a range (5-15◦ C) considered normal for trout; therefore, we used 
daily temperatures measured at the study site for a one-year period in 
1999 2000 to represent all the simulated years. 

To avoid bias in our results, we used only a minimal calibration of 
the full model. Each separate component of the IBM (e.g., feeding 
methods, growth calculations, etc.) was parameterized and tested using 
the best information available from the literature and our field site. 
After assembling the full model, the only calibration we conducted was 
adjusting two mortality parameters (controlling terrestrial predation 
and cannibalism) and two food parameters (availability of drifting and 
stationary food). These parameters were adjusted to approximately 
match growth and mortality of three age classes (age 0, 1, and 2+) 
observed at the study site over a single 75-d summer period. 

2.2. Analysis patterns. We analyzed the model by examining its 
ability to reproduce five population-level patterns. These patterns are 
explained in detail in our presentation of results for each. 

(1) A “self-thinning” relation, a negative power relation between 
mean weight and mean abundance among age classes. Self-thinning 
with an exponent of −4/3 was suggested from theoretical considerations 
by Begon et al. [1986] and observed in stream trout by Elliott [1993]. 

(2) The “critical survival time”, the duration of intense, density-
dependent mortality in newly hatched trout. This pattern is based 
on the observations of Elliott [1989]. 
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(3) Age-specific patterns in population variation over time observed 
in a trout stream similar to our study site (House [1995]). While 
these patterns are based only on field observations and not theoretical 
considerations, the observations correspond with the “complex ecology” 
perspective that population equilibrium or stability should not be 
expected even in relatively simple and undisturbed systems. 

(4) Density dependence in growth. Some observations (especially 
Elliott [1994]) have indicated that abundance has little effect on the 
size of age 0 trout, whereas the experiments of Jenkins et al. [1999] 
found strong effects of abundance on size. 

(5) Fewer large adult trout when deep pool habitat is eliminated. 
This pattern is based on the observations of Bisson and Sedell [1984]. 

3. Results. For each of the patterns used in analyzing the IBM, we 
describe the pattern and its basis, how we attempted to reproduce it 
and how simulation results compare to the expected pattern. 

3.1 Self-thinning. Begon et al. [1986] suggested that animal 
populations may exhibit a power relationship among age classes in 
which mean weight decreases with the −4/3 power of mean density. 
The theoretical self-thinning relationship is: 

W = a N  S 

where W is the mean weight of individuals in an age class at some 
time, N is the number of individuals in the age class at the same 
time (assuming habitat area is constant), a is a constant and S is the 
exponent determined as the slope of a regression of log(W ) against 
log(N). 

The theory that S = −4/3 results from assuming (a) metabolic 
rates are proportional to weightb , where the parameter b is equal 
to 0.75, and (b) food production rates are constant. Elliott [1993] 
studied self-thinning in brown trout at his Black Brows Beck study 
site. Elliott found the expected negative power relation between W 
and N , with S varying considerably among year classes. When data 
from all age classes over the 25-yr period were combined (excluding 
several outliers), Elliott found S to match the theoretical value of 
−4/3. Armstrong [1997] provided several reasons why the −4/3 power 
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self-thinning relation may not occur in freshwater salmonids: the 
availability of food varies with the trout size and habitat, and metabolic 
rates and growth vary with temperature (e.g., often there is no growth 
in winter). 

Given that self-thinning with S = −4/3 has been observed in stream 
salmonids while its theoretical basis has been questioned, we combined 
model validation with examination of the theory. Using a sensitivity 
analysis approach, we varied the metabolic parameter b in the trout 
growth component of the IBM to see if S responded as predicted by 
theory. We simulated seven scenarios in which the value of b was varied 
from 0.6 to 0.9 in increments of 0.05. Three replicates of each 5-yr 
simulation were produced. (“Replicates” are repeated simulations in 
which only the random number sequence is changed.) The sea-going 
trout studied by Elliott [1993] have only two age classes (they migrate 
to the sea after their first year), but our modeled cutthroat trout have 
four age classes. Elliott examined data observed in both early and late 
summer. We only examine data observed in late summer (October) to 
avoid (1) the “critical period” of high mortality for age 0 trout, which 
occurs in summer because the cutthroat trout spawn in spring, and (2) 
winter, when low temperatures may affect growth. Simulation started 
on October 1, 1995, and the first observations used in the analysis were 
from October 1996. 

Like the field observations of Elliott [1993], our simulations produced 
a relationship between the W and N fit fairly well by a power curve; 
also like Elliott’s data, our simulations showed the relationship to vary 
considerably among age classes. With b equal to 0.75, we found S to 
be −1.25, with the relationship having an R2 of 0.85 (Figure 1); Elliott 
found an exponent of −1.33 and R2 of 0.87 over all year-classes. (In 
preliminary experiments using various numbers of replicates, initial fish 
abundances, and random number sequences, we found S over all age 
classes to vary; in one case we matched Elliott’s value of −1.33 but this 
appeared to be coincidental.) 

Our simulation experiment varying b, partially supported both the 
theoretical concept of a self-thinning relationship determined by how 
metabolic rate varies with body weight, and the limitations of this the­
ory suggested by Armstrong [1997]. As predicted by the theory, S from 
our simulations increased (became less negative) in a nearly linear fash­
ion as the value of b increased (Figure 2). However, the modeled S is 
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FIGURE 1. Self-thinning relationship for metabolic parameter b = 0.75. 
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observed from IBM simulations. 
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consistently less negative than the theoretical value. The value of R2 for 
the self-thinning relationship also generally increased with b (Figure 2). 
As proposed by Armstrong [1997], varying importance of food competi­
tion (the process assumed by theory to drive self-thinning) may explain 
these patterns. Our model assumes that predation mortality is always 
present and density independent, so some apparent “thinning” is un­
related to food competition. Less density-dependent mortality sources 
like predation may explain why simulated S values were higher than 
theoretical ones. The increase in the self-thinning R2 as b increases is 
expected because food competition should become more intense, and 
therefore dominate mortality more, as b increases. Higher values of b 
mean that a fish’s metabolic rates are higher, requiring more food in-
take to obtain growth. The result, in our IBM, is greater competition 
for habitat that offers higher intake. At lower metabolic rates, fish give 
greater preference to habitat with low predation risks. Therefore, we 
expect actual self-thinning to more closely match the theory of Begon 
et al. [1986] as b increases. 

3.2 Critical survival time. This pattern is based on the observa­
tions by Elliott [1989] of age 0 brown trout at his Black Brows Beck 
study site. Critical survival time (CT) is Elliott’s term for the dura­
tion of a “critical period” of intense density-dependent mortality that 
commences as soon as trout fry emerge from their natal gravel. The 
critical period ends when mortality rate decreases and becomes less 
density-dependent. Elliott [1989] estimated CT by censusing trout fry 
repeatedly, usually at intervals of 30 d, and plotting the logarithm of 
the number of fry alive over time. Elliott found that these plots showed 
a distinct change in slope and defined CT as the number of days be-
tween peak abundance of trout fry and the change in slope. For his 
brown trout fry, Elliott [1989] found CT to fall within the range of 
30 70 d. 

Our experiment closely reproduced Elliott’s methods. We estimated 
CT for each of the five years in 2 replicates of three scenarios. The 
scenarios differed in the starting abundance of spawning trout, so 
they created variation in the number of age 0 trout. Abundance was 
observed from the model every 30 d. Like Elliott [1989], we defined the 
start of the critical period as the census date on which age 0 abundance 
was highest. We used a graphical method similar to that of Elliott to 
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define the end of the critical period. On a plot of log(abundance) 
vs. date, we fit a line through the first two three points to define the 
mortality rate during the critical period (the third point was included 
if it fell approximately on the line defined by the first two points). The 
points representing the last two three censuses were used to define the 
mortality rate after the critical period. The intersection of these two 
lines was assumed to occur at the CT. 

During 18 of the 29 years simulated, the IBM results showed a distinct 
critical period with CT values ranging between 30 and 65 d, except for 
one CT of 86 d (Figure 3). With this one exception, the CT values 
fell within the range of 30 70 d observed by Elliott [1984]. However, 
our simulations also produced a phenomenon not reported by Elliott: 
the absence of a distinct critical period when age 0 abundance was 
low. All of our simulations produced age 0 densities well below those 
reported by Elliott [1984], most likely due to differences in productivity 
of the two study sites and Elliott’s spawners’ being large sea-going trout 
that produce many more eggs than our small cutthroat trout. In 11 
simulation years when age 0 trout abundance was low, the mortality 
rate (slope of the logarithmic graph of number of survivors vs. date) 
remained approximately constant (shown on Figure 3 as having CT of 
zero). The absence of a distinct critical period in years of low age 0 
abundance makes intuitive sense; density-dependent mortality should 
be absent or hard to detect when density is low. 

Like Elliott [1984], we found a negative relation between initial age 0 
abundance and CT. For the 18 cases in which we observed a distinct CT 
(Figure 3), linear regression of CT vs. initial abundance had a negative 
slope and R2 of 0.17. 

3.3 Population variation over time. House [1995] examined a 
wild cutthroat trout population similar in many ways to the one at the 
Little Jones Creek site of our IBM. Similarities between House’s Dead 
Horse Canyon Creek site in Oregon and our model site include (1) being 
small watersheds in the Pacific Northwest with similar patterns of flow 
variation among seasons, (2) resident cutthroat trout as the only fish, 
(3) low flows in the range of 0.03 0.07 m3/s and (4) a history of little 
recent timber harvest, angling, or other human disturbance. However, 
an important difference is that House’s study site had flow variation 
moderated by spring inflows and winter peak flows in the range of 5 to 
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FIGURE 3. Relation between age 0 initial abundance and critical time. For 
years when no critical period was observed, the value of critical time is shown 
as zero. 

13 m3/s, whereas our site has unusually rapid and strong variation in 
flow, with annual peak flows typically in the range of 30 50 m3/s. Over 
an 11-year period, House censused trout in late summer, sampling an 
area approximately half the length of the reach we model. Data were 
reported for three age classes: age 0, 1, and 2 and older (designated as 
“age 2+”). 

House [1995] observed the following patterns (omitting those af­
fected by House’s admitted inability to census age 0 trout accurately). 
(1) Fourfold interannual variation in abundance of age 0 trout (the 
highest abundance was four times the lowest abundance). (2) Age 1 
had the most stable abundance, with the highest abundance only twice 
the lowest. (3) Age 2+ was the most variable age class, with sixfold 
interannual variation. (4) No correlation between the number of age 1 
fish one year and the number of age 2+ fish the following year. (5) A 
weak correlation between peak flow in winter and abundance of age 1 
trout the following summer. (6) No correlation between summer low 
flow and trout abundance. 

We compared our trout IBM to the observations of House [1995] 
by conducting one 11-year simulation (1989 99), observing abundance 
from the IBM once per year in September. (We actually simulated 
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12 years and discarded results from the first year to reduce effects of 
the initial population.) Our model with input from Little Jones Creek 
produced much higher interannual variation than observed by House 
[1995] (Table 1). The range of variation (highest annual abundance 
divided by the lowest) was more than an order of magnitude greater 
than the values of 4 and 2 reported by House for ages 0 and 1. The 
high interannual variation in abundance observed in our simulations 
was caused by the frequent peak flow events, which scoured out redds 
(eliminating almost all redds in 1996) and caused high mortality in age 
0 trout (especially in 1998). Our observations at Little Jones Creek 
indicate that high flow impact on age 0 abundance predicted by the 
model is not unrealistic. Other studies have found strong effects of 
flood flows on age 0 salmonids (e.g., Thorne and Ames [1987]). 

TABLE 1. Variation in abundance over an 11-yr. simulation, 

with actual flows for Little Jones Creek. 

Age 0 1 2+ 

Maximum abundance 1144 202 96 
Minimum abundance 17 4 19 
Range of variation 67 51 5 

To make our simulations more comparable to House’s study site with 
its relatively stable flows, we repeated the simulations using flow input 
smoothed by replacing each day’s flow with a 10-day running average of 
the measured flows (Figure 4). In this smoothed flow input, peak flows 
ranged between 10 and 25 m3/s. With the smoothed flow input, our 
IBM simulations produced ranges of variation similar in magnitude 
to those observed by House [1995] (Table 2). The simulations with 
smoothed flows were used for all the following comparisons to House’s 
observations. 

Our simulations did not match House’s observed pattern of varia­
tion among age classes. Whereas House found age 1 to have the least 
interannual variation and age 2+ the highest, we found the opposite 
(Table 2). There are several potential explanations for these differing 
patterns. The first is habitat differences between the two sites; our 
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FIGURE 4. Natural and smoothed flows for water year 1996. 

Little Jones Creek site appears to have a higher fraction of deep pool 
habitat that offers high survival to adult trout. As discussed below 
(Section 3.5), the availability of such pools affect population dynamics. 
A second potential explanation is that our model lacks some process, 
making mortality of age 2+ trout more stochastic. Our simulations 
predict that terrestrial predators account for most mortality of adult 
trout, with this mortality being a stochastic function of habitat (depth, 
velocity and hiding cover all reducing the risk). Terrestrial predation 
may be stochastic at longer time scales than we assume; for example, 
otters may thoroughly search a stream reach for trout prey only at rare 
intervals. Mortality due to spawning stress may be a more common 
and variable source of mortality than we assume. A third explanation 
is the uncertain method used by House [1995] to estimate fish ages. 
House used a length-frequency relation to estimate age from length, 

TABLE 2. Variation in abundance over an 11-yr. simulation, 

with smoothed flows for Little Jones Creek. 

Age 0 1 2+ 

Maximum abundance 961 183 99 
Minimum abundance 338 49 46 
Range of variation 3 4 2 
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FIGURE 5. Relation between abundance of age 1 trout and age 2+ trout the 
following year in an 11-year IBM simulation. 

a method that is inherently uncertain and the fraction of age 1 fish 
misidentified as age 2 is higher in years of high growth. As a result, 
variation in growth among years likely induced errors in determining 
age that explain some of House’s observed variation in age 2+ abun­
dance. 

These potential explanations for differences in abundance variability 
among age classes may also explain why our simulations did not match 
the observation of House [1995] that abundance of age 2+ trout in 
one year was not correlated with the abundance of age 1 trout the 
previous year. We found a high correlation between these variables 
(Figure 5) with R2 = 0.92. While we did not thoroughly investigate this 
discrepancy, the IBM could be a useful tool for doing so. For example, 
the IBM-simulated length of each fish could be used to estimate fish 
age using House’s method, to determine how the method’s uncertainty 
affects results. 

Like House [1995], the IBM produced a weak correlation between 
peak winter flow and age 1 abundance the following summer (Figure 6), 
although the correlation in our simulations was stronger (R2 = .29) 
than that observed by House (R2 = .05). The stronger correlation 
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FIGURE 6. Relation between peak flow in a winter and age 1 abundance the 
following summer, from an 11-year IBM simulation. 

likely resulted from peak flows’ in the model simulation being higher 
and varying over a wider range than at House’s site. 

Also like House [1995] we found no correlation between low flow and 
abundance. We examined the relation between the lowest flow in a year 
(typically occurring in September or October) and the abundance of age 
1 and 2+ trout the following summer, and found no relation (Figure 7). 
The lack of correlation observed by House and in our simulations is 
likely to result in part from the low interannual variation in low flows. 

Although our IBM simulations did not reproduce all the abundance 
patterns observed by House [1995], this analysis did show our IBM 
capable of reproducing several important relationships. First, our 
simulations reproduced the most basic conclusion of House’s study, that 
interannual variation in trout abundance can be high even in relatively 
simple and undisturbed systems. Second, we found the interannual 
variation in abundance (and how it differs among age classes) to be 
highly dependent on flow variability. Especially, winter peak flows have 
strong effects on recruitment and abundance in succeeding years, in 
both our model and in nature (e.g., Strange et al. [1992]). Finally, our 
simulations reproduced the observations of House that abundance in 
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FIGURE 7. Summer low flow vs. abundance the following summer. 

summer is affected by peak flow in the previous winter but not related 
to minimum flow in the previous summer-fall low-flow season. 

3.4 Density dependence in growth. Field observations and ex­
periments have produced conflicting answers to the question of whether 
trout density affects growth of age 0 trout. Elliott [1994] examined 
abundance and size of age 0 trout observed once in each of 17 years 
at his Black Brows Beck study site and concluded that abundance had 
little effect on growth. Jenkins et al. [1999] observed abundance and 
size of age 0 trout in natural and controlled stream channels, in some 
cases manipulating trout density. Jenkins et al. observed that abun­
dance had a strong negative effect on age 0 size and concluded that 
growth was density-dependent. Major differences between the studies 
of Elliott [1994] and Jenkins et al. [1999] include that Jenkins et al. 
made observations over relatively long stream reaches (> 90 m), used 
multiple treatments with varying density in the same year, and in some 
cases blocked immigration and emigration. 

We conducted experiments resembling those of both Elliott [1994] and 
Jenkins et al. [1999]. Output of one 11-year simulation (the same used 
to examine population variation over time, above) was examined for 
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density-related variation in age 0 size and growth among years, similar 
to Elliott’s observations. We also conducted an experiment in which 
trout abundance was manipulated in otherwise identical simulations 
over a one-year period, conceptually similar to the design of Jenkins et 
al. In this experiment, we ran the model over calendar year 1994. In five 
scenarios of increasing initial abundance, the total initial abundance 
of age 1, 2, and 3 trout was varied from 17 to 240. This variation 
in initial abundance affected the number of age 0 trout produced via 
spawning in spring. Five replicates were conducted for each of these 
scenarios. These simulations used smoothed flow input to eliminate the 
redd scouring that otherwise reduced spawning success. Like Jenkins 
et al. [1999] we observed age 0 abundance and size in late November or 
early December. 

Both our 11-year simulation and the one-year scenarios produced fall 
age 0 mean weights that varied with the density of age 0 trout, following 
a power curve as did the observations of Jenkins et al. (Figures 8 and 
9). This result appears to conflict with Elliott’s observation that age 
0 size was not related to density, but the relation between size and 
abundance we observed from the IBM is noisy, and if confined to high 
densities (as Elliott’s data were), could lead to the conclusion that size 
is not related to density. 

However, examination of our IBM results indicates that the observed 
negative relation between size and density is not necessarily an indica­
tion that growth was density-dependent. The fall mean weight of age 
0 trout is a function not just of growth rate, but also of when trout 
emerged from their eggs and of size-dependent mortality. When we 
examined growth rate (change in mean weight of age 0 trout over a 
30-d period, expressed as g/d), we found no relation between density 
and growth in the 11-year simulation (Figure 10). We actually found 
a weak positive relation between density and growth rate in the mul­
tiple one-year simulations (Figure 11). The negative relation between 
size and age 0 trout density produced by our simulations matches the 
observations of Jenkins et al. [1999], but appears not to be caused 
by density-dependent growth. Instead, at least three other processes 
potentially could explain this relation. One is variation in timing of 
spawning: in years when more spawning occurred later in the summer, 
more age 0 trout are likely to still be alive at the time of the fall census 
(making density higher) but these trout will be younger and therefore 
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FIGURE 8. Abundance of age 0 trout vs. mean weight (g), observed in late 
November or early December from a single 11-year simulation. The regression 
power curve has R2 of 0.46. 
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FIGURE 9. Abundance of age 0 trout vs. mean weight (g), observed in late 
November from multiple one-year simulations. The regression power curve has 
R2 of 0.16. 
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FIGURE 10. Abundance for age 0 trout vs. mean growth rate (g/d; evaluated 
from the change in mean weight over a 30-d period). Results are from a single 
11-year simulation, for all months between fry emergence and late fall. Linear 
regression R2 is 0.01 with a slightly positive slope. 

smaller. (Spawn timing did not vary much in our simulations, making 
this explanation unlikely.) A second explanation possibly important in 
multi-year or multi-site experiments is that both density and mortal­
ity are affected by variation in availability of habitat and food (e.g., 
due to interannual flow variability). When resources are scarcer, mor­
tality of age 0 trout is expected to be higher and smaller trout more 
likely to die; consequently, abundance is expected to be lower and mean 
size higher. Third, in our multiple one-year simulations we found late 
summer and fall mortality of age 0 trout (number dying per day) to 
be nearly independent of density but apparently greater for smaller 
fish. (The most prevalent form of mortality, starvation and disease due 
to poor condition, was positively related to density; however, per-fish 
predation mortality was negatively related to density. At low densi­
ties, predation mortality is roughly as important as poor condition, 
Figure 12.) We observed a positive relation between mortality and 
growth rate (R2 = 0.10), likely a result of size-dependent mortality. 
Such a size-dependent, but density-independent, mortality rate (deaths 
per day) would have strongest, positive effects on the apparent growth 
rate when abundance is small. 

The trout IBM reproduced the observations of Jenkins et al. [1999] 
that the fall mean size of age 0 trout has a negative power relation with 
trout density. However, our simulations do not support the implicit 
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FIGURE 11. Abundance of age 0 trout vs. mean growth rate (g/d; evaluated 
from the change in mean weight over a 30-d period), between when all trout 
have emerged and the end of December. Results are from multiple one-year 
simulations. Linear regression has R2 of 0.13. 

assumption of both Elliott [1994] and Jenkins et al. that fall mean size 
of age 0 trout is a good indicator of growth rate, or the conclusion of 
Jenkins et al. that growth rate is negatively density-dependent. In fact 
the IBM simulations show that growth rate can increase with density 
while fall size decreases with density. Our experiment indicates that, 
especially when mortality is as high as it is in the first year of life for 
trout, relations between size, growth, abundance, and mortality are 
unlikely to be simple. 

3.5 Fewer large trout in the absence of pools. Under this 
pattern we expect streams lacking deep pool habitat to produce fewer 
large adult trout, and to have lower relative abundance of older trout. 
Bisson and Sedell [1984] provide example observations supporting this 
pattern: they observed that in watersheds with clearcut timber harvest 
both the pool volume and the relative abundance of older trout were 
lower, in comparison to control watersheds. 

The Little Jones Creek habitat input for our IBM simulations includes 
six pools with depth of approximately 1 m at summer flow. We 
compared results from this “with pools” scenario to results obtained 
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FIGURE 12. Abundance of age 0 trout vs. per-fish mortality due to (A) poor 
condition and (B) predation. Predation due to terrestrial animals and canni­
balism are shown separately. Note the difference in scale between A and B. 
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when each of the simulated pools was removed from the model and 
replaced by adjacent habitat that is shallower and faster. The stream 
length and surface area was similar for both scenarios. The “without 
pools” scenario approximates filling in the deepest part of all the 
pools, affecting the overall distributions of both depth and velocity 
(Figure 13). 

The effects of removing pools was examined using five-year simu­
lations, with 10 replicates of the with and without pools scenarios. 
Abundance and mean weight of each age class were observed from the 
IBM once per simulated year, in late August. 

Removing the pools resulted in lower abundance of all age classes, 
with the decrease being greater for higher age classes (Table 3). An 
observed increase in the frequency of mortality by terrestrial predation 
in the absence of pools appears to be the ultimate cause of lower 
abundance. This result was expected because our IBM assumes depth 
provides protection from terrestrial predation (making fish harder to 
see from the surface). Increased predation on adult trout reduced the 
number of spawners, and lower growth of adult trout, (discussed below) 
reduced the number of eggs per spawner. We observed a much lower 
number of eggs laid in the without-pools scenario, the likely cause of 
reduced abundance of juvenile trout. 

TABLE 3. Differences in abundance and mean weight between scenarios


with and without pool habitat. “Change” is the percent change


in value from the “the pools” to “without pools” scenario.


Age class 0 1 2 3+ 

Mean August With pools 597 93 36 25 
abundance Without pools 487 65 24 14 

Change -19% -29% -33% -46% 

Mean August With pools 1.2 17 76 494 
weight, g Without pools 1.4 20 76 32 

Change +14% +18% 0% -35% 
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FIGURE 13. Depth and velocity distributions for simulations with and without 
pools, at a typical flow of 0.3 m3/s. 

Removing pools also resulted in higher mean weight for age 0 and 
1 trout, but lower weight of older trout (Table 3). The higher weight 
of age 0 and 1 trout is explained by two processes. First, the lower 
abundance occurring in the without-pool scenario results in increased 
size of age 0 trout (as discussed above in Section 3.4). This process 
appears to explain the size response of age 0 trout, since these fish 
prefer shallow habitat and exhibited little change in habitat use when 
pools were removed. Second, removing pools forces age 1 trout to use 
shallower, faster habitat where both growth and predation risk are gen­
erally higher. Our IBM assumes that as fish approach reproductive size 
they give greater preference to reducing predation risk vs. maximizing 
growth. When pools are present, this change in preference results in 
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increased use of deep habitat and decreased growth as reproductive size 
is approached; the absence of pools prevents this transition. The much 
greater mean weight of age 3+ trout with pools appears to result from 
two processes. First is the higher survival rate with pools trout on 
average live longer and attain greater size with the predation protection 
provided by deep water. Second is that large trout may respond to pool 
removal by using high velocities instead of depth to reduce risk of ter­
restrial predation; the IBM assumes that high velocity as well as depth 
makes trout more difficult for terrestrial predators to see and catch. In 
the absence of pools, simulated age 3+ trout often used velocities of 
100 140 cm/s, which are above optimal for growth. 

4. Conclusions. The first objective of this study was to understand 
how population dynamics in the trout IBM emerge from processes 
acting at the individual level. A primary conclusion is that relatively 
simple-appearing responses at the population level may result from 
complex interactions at the individual level. Our observation that 
trout size decreased with density while the growth rate was unaffected 
or increased with density illustrates this conclusion; at least in our 
simulations, density effects on size are not explained simply by food 
competition but instead appear to be a complex effect of multiple 
mortality sources that vary in size- and density-dependence. A second 
example is the observation that reducing the availability of pool habitat 
resulted in smaller size of large trout; the size effect appeared to result 
in part from predation risk causing the trout to use habitat where 
growth is low. 

The following are other ways in which we found individual-level 
processes to affect population dynamics. (1) The weight coefficient b 
used to simulate metabolic rates was found to affect the population 
self-thinning relation, apparently by affecting the strength of food 
competition. (2) The “critical period” of high density-dependent 
mortality has strong effects on recruitment of juvenile trout. Our 
model could explain this mortality as a result of the limited dispersal 
ability of trout fry and strong food competition. However, simulated 
recruitment appeared to be limited by spawning success often; when the 
simulated initial abundance of age 0 trout was low, no critical period 
was observed. (3) Scouring of redds was found to have strong effects 
on population variability in situations where flow spates are frequent. 
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Our second objective was to evaluate the IBM’s ability to reproduce 
observed population-level patterns. Overall, the IBM was highly suc­
cessful in reproducing the following patterns. 

Self-thinning. The IBM produced self-thinning relations qualitatively 
and quantitatively similar to those observed by Elliott [1993]. 

Critical survival time. Simulated duration of the critical period 
closely matched the observations of Elliott [1989]. Unlike Elliott’s ob­
servations, our simulations included some years when initial abundance 
of age 0 trout was so low that no critical period was distinguishable. 

Population variation over time. Our simulations matched the overall 
conclusion of House [1995] that natural population variation can be 
high. We did not reproduce the pattern among age classes in variation 
observed by House; potential explanations include differences in habitat 
between our site and House’s, error by House in determining fish age, 
and poor representation by our IBM of the stochasticity of terrestrial 
predation mortality. The IBM did reproduce the observed effects of 
peak and low flows on trout abundance. 

Density dependence in growth. The IBM reproduced the negative 
power relation between abundance and size in fall age 0 trout observed 
by Jenkins et al. [1999]. 

Fewer large trout in the absence of pools. This pattern was repro­
duced, with both relative abundance and size of older trout being re­
duced when pools were eliminated. 

The third objective of our study was to evaluate the theoretical basis 
for some patterns. We evaluated the basis for population self-thinning 
proposed by Begon et al. [1986] by varying the metabolic parameter 
b that theoretically determines the exponent of the relation between 
abundance and mean weight of age classes. Our experiment confirmed 
the self-thinning theory to the extent that it produced a consistent 
relation between metabolic rate and self-thinning exponent, but it also 
indicated that the theory is not completely correct because the observed 
exponents were consistently different than the theoretically predicted 
ones. The population variability observations of House [1995] were not 
related to a specific ecological theory, but House did conclude that 
his observations contradict the common perspective that undisturbed 
natural systems tend toward stability or equilibrium. Our simulations 
support House’s conclusion, showing that natural events like spates 
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and the natural complexities of trout populations can produce highly 
unstable population dynamics. 

This study illustrates several important benefits of using IBM’s to 
study ecological systems. First, we can evaluate ecological theory using 
simulation experiments that would be impossible in the field or labo­
ratory. Our investigation of how population self-thinning is related to 
metabolic rates is an example; we cannot manipulate the metabolic 
rates of real animals. Second, IBM’s can provide alternative explana­
tions for observed phenomena. Jenkins et al. [1999] attributed density-
dependence in trout size to competition for food or habitat, envision­
ing that higher densities produced smaller feeding territories for all 
fish. Our IBM does not include such a process, instead assuming a 
rigid size-based feeding hierarchy. However, our IBM still reproduced 
the observed relation between density and size, indicating that other 
processes (that are in our IBM) can also explain the relation. Third, 
IBM simulations can investigate a wider range of conditions than are 
often observed in the field, helping us determine whether observed re­
lationships are situation-specific or truly general. For example, Elliott 
[1989] concluded that the “critical period” of density-dependent mor­
tality regulates trout abundance, but we found simulated conditions 
where the critical period was nonexistent. Finally, our experiments 
showed that even simple-appearing population-level relations are often 
the complex outcomes of multiple factors like habitat availability, var­
ious kinds of mortality, food competition, and initial conditions; and 
habitat selection to make tradeoffs among these factors further compli­
cates their effects. Attempting to decipher how such relations emerged 
in the IBM reminds us that asking simplistic questions (e.g., “is growth 
density-dependent?”) or expecting simple cause-effect relationships is 
unlikely to be productive. 
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